Cells normally only use 20 building blocks, called amino acids, to build all their proteins, but now, scientists can introduce “unnatural amino acids” for use in protein construction, which have the same basic backbone as all amino acids, but novel side chains. In this way, the team prompted their modified microbes to build macrocycles — a class of molecules used in various drugs, including antibiotics — with unnatural amino acids incorporated in their structures. In the future, the same system could potentially be adapted to make plastic-like materials, without the need for crude oil, Robertson said.
“This was unthinkable ten years ago,” said Abhishek Chatterjee, an associate professor of chemistry at Boston College, who was not involved in the study. Assuming the method can be adopted easily by other labs, it could be used for a wide range of purposes, from drug development to the production of never-before-seen materials, he said.
“You can actually create a class of polymers that are completely unheard of,” Chatterjee said. “When this [technology] becomes really efficient and all the kinks are ironed out, it could become an engine for developing new classes of biomaterials,” which could be used in medical devices that get implanted in the human body, for example, he said.
The genetic code of microbes have been re-engineered by researchers in Cambridge to create a synthetic cell with capabilities unlike anything in nature, opening up the possibility of new materials for everything from plastics to antibiotics https://t.co/Qfq8EsgPvp
— Financial Times (@FinancialTimes) June 3, 2021